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1 Project Description

The XVis project brings together the key elements of research to enable scientific discovery at 
extreme scale. Scientific computing will no longer be purely about how fast computations can be 
performed. Energy constraints, processor changes, and I/O limitations necessitate significant 
changes in both the software applications used in scientific computation and the ways in which 
scientists use them. Components for modeling, simulation, analysis, and visualization must work 
together in a computational ecosystem, rather than working independently as they have in the past. 
This project provides the necessary research and infrastructure for scientific discovery in this new 
computational ecosystem by addressing four interlocking challenges: emerging processor 
technology, in situ integration, usability, and proxy analysis.

Emerging Processor Technology One of the biggest recent changes in high-performance 
computing is the increasing use of accelerators. Accelerators contain processing cores that 
independently are inferior to a core in a typical CPU, but these cores are replicated and grouped 
such that their aggregate execution provides a very high computation rate at a much lower power. 
Current and future CPU processors also require much more explicit parallelism. Each successive 
version of the hardware packs more cores into each processor, and technologies like 
hyperthreading and vector operations require even more parallel processing to leverage each 
core’s full potential.

XVis brings together collaborators from the predominant DOE projects for visualization on 
accelerators and combines their respective features in a unified visualization library named VTK-
m. VTK-m will allow the DOE visualization community, as well as the larger visualization 
community, a single point to collaborate, contribute, and leverage massively threaded algorithms. 
The XVis project is providing the infrastructure, research, and basic algorithms for VTK-m, and 
we are working with the SDAV SciDAC institute to provide integration and collaboration 
throughout the Office of Science.

In Situ Integration Fundamental physical limitations prevent storage systems from scaling at the 
same rate as our computation systems. Although large simulations commonly archive their results 
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before any analysis or visualization is performed, this practice is becoming increasingly 
impractical. Thus, the scientific community is turning to running visualization in situ with 
simulation. This integration of simulation and visualization removes the bottleneck of the storage 
system.

Integrating visualization in situ with simulation remains technically difficult. XVis leverages 
existing in situ libraries to integrate flyweight techniques and advanced data models to minimize 
resource overhead. Within our in situ visualization tools, XVis integrates existing visualization 
algorithms and those incorporating emerging processor technology. XVis also studies the latest 
techniques for new domain challenges and for post hoc interaction that reconstructs exploratory 
interaction with reduced data.

Usability A significant disadvantage of using a workflow that integrates simulation with 
visualization is that a great deal of exploratory interaction is lost. Post hoc techniques can recover 
some interaction but with a limited scope or precision. Little is known about how these 
limitations affect usability or a scientist’s ability to form insight. XVis performs usability studies 
to determine the consequences of in situ visualization and proposes best practices to improve 
usability.

Unlike a scalability study, which is always quantitative, XVis’ usability studies are mostly 
qualitative. Our goal is not to measure user performance; rather, we want to learn about the 
limitations and benefits of incorporating in situ methods in scientists’ workflows. These studies 
reveal how the simulation, hardware, and users respond to a particular design and setting.

Proxy Analysis The extreme-scale scientific-computation ecosystem is a much more complicated 
world than the largely homogeneous systems of the past. There is significantly greater variance in 
the design of the accelerator architecture than is typical of the classic x86 CPU. In situ
visualization also yields complicated interactions between the simulation and visualization that 
are difficult to predict. Thus, the behavior observed in one workflow might not be indicative of 
another.

To better study the behavior of visualization in numerous workflows on numerous systems, XVis 
builds proxy applications that characterize the behavior before the full system is run. We start 
with the design of mini-applications for prototypical visualization operations and then combine 
these with other mini-applications to build application proxies that characterize the behavior of 
larger systems. The proxy analysis and emerging processor technology work are symbiotic. The 
mini-applications are derived from the VTK-m implementations, and the VTK-m design is 
guided by the analysis of the mini-applications.

2 Progress Report

The XVis research plan specified in the proposal is divided into a set of milestones spread over 
the 3-year period of the project, divided among the projects research areas, and distributed among 
the participating institutions. Our report is similarly organized by giving progress on each of these 
milestones. Our report is abbreviated to include only those milestones with relevant work in the 
time period of this report.

2.1 Emerging Processors

Milestone 1.a, Initial VTK-m Design (Year 1–SNL, Kitware, ORNL, LANL) Provide the 
research and design for VTK-m functional operation and, in conjunction with SDAV, 
develop an initial implementation.



Expected Completion: FY15, Q4 Status: Complete

The VTK-m prototype is central to many of the activities in XVis. As such, a significant portion 
of the work in the early part of the project is dedicated to this milestone, and we have made a 
significant amount of progress.

We have established a central git repository hosted by Kitware. The URL for the repository is
https://gitlab.kitware.com/vtk/vtk-m. We have established several procedures for managing the 
collaborative development of the project. This includes a weekly developers meeting to 
coordinate and communicate, a system of design documents (listed at 
http://m.vtk.org/index.php/Design_Documents), a branchy development workflow for 
coordinating concurrent contributions (http://m.vtk.org/index.php/Contributing_to_VTK-m), a set 
of coding conventions, and a large set of regression tests run nightly (reported at 
https://open.cdash.org/index.php?project=VTKM). The VTK-m repository is maintained by a 
gitlab service that facilitates several aspects of our development procedures including managing 
design review pages and running regression tests before any modifications are committed to the 
main repository.

The basic foundations for VTK-m including the build system, package structure, and fundamental 
classes are implemented. VTK-m now includes a generic device adapter that implements the 
basic data parallel primitives and provides performance portability. VTK-m currently has 
implementations for a CUDA device, a multi-core CPU device (using the TBB library), and a 
serial device for debugging purposes.

VTK-m has a generic array interface that provides a single interface for direct access to data of 
any type made possible with static templating. This generic array interface simplifies zero-copy 
interfaces to other data structures. VTK-m also has a dynamic array wrapper that helps with 
handling data whose type is not known until compile time.

The data model in VTK-m is based on an arbitrary collection and combination of cells, fields, and 
coordinate systems. The data model is abstract enough to flexibly represent a variety of structures 
but concrete enough to have clear semantics. The data model can also adapt to arbitrary array 
structures allowing VTK-m to interface directly with data defined in other software packages. We 
have currently implemented cell sets that represent either cells arranged in 1, 2, or, 3D structured
array or unstructured cells with explicitly defined connections. We also have implementations for 
coordinate systems with either uniform axis-aligned spacing or arbitrary positions.

We have been defining and implementing a user-facing API to construct data sets of common 
mesh types, including regular grids, rectilinear grids, and unstructured grids. The goal of this API 
is provide an interface for users of VTK-m that masks the complexity of the underlying 
representation while providing a straightforward and efficient way to create VTK-m datasets from 
raw data arrays, or other representations. This includes translation from VTK datasets into VTK-
m datasets, data readers, and more.

The mechanism for building and executing worklets is available. The mechanism is flexible in 
that it is straightforward to define new worklet algorithms, new worklet types, and new data 
handling mechanisms. VTK-m currently supports two basic worklet patterns (with more planned 
for the future). The first worklet pattern is a simple map from an input array to an output array. 
The second worklet pattern can specify connections between two arbitrary topological elements 
(for example from points to cells or from cells to points) to give the worklet access to element-
wide data. We have also added a generic cell shape mechanism and basic cell-wise operations 
such as parametric coordinates, interpolation, and derivatives.

We have also begun to develop filters within VTK-m, which implement specific visualization 
algorithms using the VTK-m arrays data sets, worklets, and device adapter algorithms. The 
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algorithms currently integrated are cell average, point elevation, Marching Cubes (on regular 
grids), vertex clustering (for grid decimation), clip, and external faces. Several important 
algorithms are also in code review including statistics (moments, median, mean, variance, 
standard deviation, skew, and kurtosis), histogram, and tetrahedralization of both structured and 
unstructured grids. In addition to the aforementioned filters, which have been implemented based 
on standard existing algorithms, novel data-parallel algorithms are also being designed in 
collaboration with Hamish Carr from the University of Leeds for computing contour trees, which 
encode the topological changes that occur to the contour as the isovalue ranges between its 
minimum and maximum values.

In conjunction with the SDAV SciDAC institute, the VTK-m development team had a design 
review with engineers from NVIDA on March 4-5 for running VTK-m on CUDA-capable cards. 
Highlights of the meeting include suggestions to introduce CUDA asynchrony/streaming, texture 
memory, layouts for unstructured mesh connectivity, and the possibilities of JIT compiling. In 
response to this review we have implemented texture memory support, and investigated better 
scheduling strategies for the CUDA device adapter, both of which improve performance.

The VTK-m development team held a code sprint on September 1-2 at Lawrence Livermore 
National Laboratory. There were over 25 participants that represented work from many different 
organizations including national laboratories (SNL, LANL, ORNL, LBNL, LLNL), universities 
(Oregon, UC Davis), and industry (Kitware, NVIDIA, Intelligent Light). This event allowed us to 
reach out to several interested developers to get them kick started with VTK-m development and 
also allowed us to make progress in several key areas of VTK-m and its algorithms.

To enable broad sharing of our code, we have received approval to assert copyright on our early 
implementation of VTK-m. VTK-m is officially released with a BSD 3-clause license.

Our VTK-m development effort is also focused on providing documentation to make our library 
accessible. We are maintaining a User’s Guide with detailed information on using the features 
currently available in VTK-m. The current version of the VTK-m User’s Guide is available from 
the VTK-m Wiki (http://m.vtk.org/images/c/c8/VTKmUsersGuide.pdf).

We consider the current state of the VTK-m software to be a demonstration of a working design 
and thus a completion of this milestone. However, development of VTK-m will continue 
throughout XVis and we will continue to report on its progress. We anticipate a prototype 
integration of VTK-m with VTK and ParaView to begin in FY16 Q1, and we plan to release 
version 1.0 of VTK-m in FY16 Q2.

Milestone 1.b Array Characterization (Year 2–SNL, Kitware) Automatically characterize 
how arrays are used and leverage that information to optimize memory hierarchy usage.
Expected Completion: FY16, Q4 Status: Preliminary work

During a design review with NVIDIA engineers we discussed the benefits of using texture 
memory when accessing global arrays. On NVIDIA hardware, global memory reads must be 
accessed in 32, 64, or 128 byte transactions. When a warp executes an instruction that uses global 
memory, the fetches are coalesced into the minimum number of transactions possible. If a warp is 
well coalesced a single 32, 64, or 128 byte transaction will suffice, otherwise more transactions 
will occur causing throughput to suffer. Texture memory is global memory backed by the L1 
texture cache, allowing for higher throughput when there is 2D locality of the memory fetches.

In VTK-m uncoalesced memory access are very common when doing any algorithm that requires 
two different types of topological information, for example cells, and points or faces and edges. 
To solve this problem we have implemented custom classes that wrap all memory reads when
executing on CUDA. These classes then use the provided CUDA command ldg allowing for 
texture memory reads from global memory accesses without explicitly constructing texture 
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objects. This has resulted in a ~10% performance increase when executing Cell based algorithm 
that require Point based global memory reads.

Milestone 1.c Hybrid Parallel (Year 2–LANL) Compare alternative models for the 
interaction of shared-memory and distributed-memory parallelism within VTK-m.
Expected Completion: FY16, Q4 Status: Preliminary work

We have begun to explore the interplay between shared-memory data-parallelism and inter-node 
distributed-memory parallelism in the context of an algorithm for computing contour trees (Reeb
graphs), which summarize the development of contours in a data set as the isovalue varies, as 
mentioned with regards to Milestone 1.a. Although topological analysis tools such as the contour 
tree and Morse-Smale complex are now well established, there is still a shortage of efficient 
parallel algorithms for their computation, in particular for massively data-parallel computation on 
a SIMD model. We developed a novel data-parallel algorithm for computing the fully augmented 
contour tree, using a quantized computation model. We then extended this to provide a hybrid 
data-parallel / distributed algorithm, allowing scaling beyond a single GPU or CPU, and tested its 
scaling using Earth elevation data from GTOPO30 across 16 nodes. Our implementation uses the 
portable data-parallel primitives provided by Nvidia’s Thrust library, as well as MPI for inter-
node communication.

2.2 In Situ

Milestone 2.a Expand Data Models (Year 1–ORNL, Kitware) Expand visualization data 
models to encompass broader scope from new science domains.
Expected Completion: FY15, Q3 Status: Complete

The framework of the VTK-m data model is now in place. It includes some advanced features 
necessary to support in situ analysis and modern architectures and simulation codes. Specifically, 
initial heterogeneous memory space support is available through the VTK-m array interfaces, and 
this array infrastructure has zero-copy support. The VTK-m data model supports multiple cell sets 
to allow mixed-topology meshes, meshes multiple coordinate arrays to support meshes that live in 
multiple coordinate systems simultaneously, and meshes without coordinate systems entirely. 
These examples were all challenging to represent using traditional data models. It is generally 
more flexible as well, allowing, for example, hybrid meshes with regular points but unstructured 
cells, and overall, this can result in greater efficiency. We expect to continue to enhance and 
refine this data model throughout the project lifetime.

Milestone 2.b Post Hoc Interaction (Year 1–U Oregon) Implement three algorithms that 
use extreme-scale features such as non-volatile memory or knowledge of 
communication efficiencies.
Expected Completion: FY15, Q4 Status: Delayed

Milestone 2.b explores architectural features currently beyond the expressivity of VTK-m. For 
this milestone, three architectural features are to be explored and evaluated, to potentially 
influence the VTK-m design. We have made excellent progress on our first architectural feature, 
which explores the performance improvements possible when using different types of memory. 
We performed this milestone within our ray-tracing code (now ported to VTK-m) and found that 
accessing GPU-specific memory significantly improved performance. This finding was a 
contributor in the expansion of VTK-m's improved memory. For our second architectural feature, 
we are exploring the usage of SSD for post-hoc exploration. A study is underway, which we 
expect to complete in the next three months. Finally, we decided to focus on deep memory 
hierarchies for the third architectural feature, and also to delay this study until more architectures 



are available (i.e., NVLink). This delay is consistent with our under spending and should not 
interfere with the completion of the project.

Milestone 2.c Flyweight In Situ (Year 2–Kitware) Provide flyweight in situ visualization 
techniques into a feature-rich, general-purpose library.
Expected Completion: FY16, Q4 Status: In progress

Kitware has been investigating using non-standard memory layouts for arrays and data structures. 
As a first step towards this goal, we developed the MappedDataArray and MappedDataSet classes, 
which allow for custom memory layouts. After further evaluation, our conclusion was the 
overhead introduced by the abstraction used in this approach is too high. We are currently 
working on a next generation version of this framework that depends on template based 
polymorphism rather than virtual dispatching. This approach gives us performance that is close to 
using raw pointers. While the main objective of these changes was to allow for tight coupling of 
VTK in situ with simulations, they also allow for things such as constant value arrays, implicit 
point arrays, and other efficient data model concepts that VTK-m also has. This work could be 
the foundation for allowing VTK-m’s data model to be used efficiently and seamlessly inside 
VTK with no memory copies.

We are in the process of developing a prototype that demonstrates how VTK-m can be integrated 
with VTK and ParaView Catalyst for in situ analysis. This work is done in collaboration with 
NVIDIA and our aim is to demonstrate it at SC15. We expect that Catalyst will form the 
foundation of our flyweight in situ framework.

Milestone 2.d Data Model Application (Year 2–ORNL) Explore application of new data 
models to novel architectures appropriate to in situ.
Expected Completion: FY16, Q3 Status: In progress

We have been exploring the integration of VTK-m in situ with several applications running on 
DOE LCFs. These have included several fusion codes, and a computational seismology code. 
Efforts have been focused on understanding the scientific workflows being used by these 
applications. This better allows us to target machine architectures and analysis products for use in 
situ to help scientists understand their simulations. Included in these efforts is work being done 
with XGC, a highly scalable physics code used to study plasmas in fusion tokamak devices. 
Recent work has explored using light-weight plugins to perform visualization both of the particles 
and the field variables using ADIOS and DataSpaces.

Milestone 2.e Memory Hierarchy Streaming (Year 2–LANL) Develop streaming out-of-
core versions of key visualizations and analysis algorithms to efficiently use deep 
memory hierarchies within in situ applications.
Expected Completion: FY16, Q4 Status: Preliminary work

We have begun to experiment with the use of the STXXL library from Karlsruhe University for 
streaming data from disk into main memory and into accelerator memory for isosurface and KD-
tree construction algorithms. We have also prototyped the combination of such external-memory 
algorithms with our distributed wrapper for Thrust as a first step towards enabling these 
algorithms to operate on data that is both distributed across nodes and too large on each node to 
fit into memory.



2.3 Usability

Milestone 3.a Develop Techniques to be Studied (Year 1–UC Davis) Identify existing and 
new visualization techniques to be studied. Revise existing ones and implement new 
ones as needed.
Expected Completion: FY15, Q4 Status: Complete

During this period, the UC Davis team continued studies in two areas. In one area, the aim is to 
evaluate the usability of VTK-m, a fine-grain parallel programming library, for realizing 
visualization operations. We have implemented a ray casting and cell projection volume renderer 
in both Dax and VTK-m using data parallel primitives to compare their performance on thee 
different hardware architectures: NVIDIA Titan X, Intel Xeon E5, and Intel Xeon Phi. Despite 
the portability provided by these frameworks, we observe that additional architecture specific 
modifications are necessary to achieve acceptable performance on some architectures. A paper 
presenting some of our experimental study results and findings will be presented at the 
Symposium on Visualization in HPC.

In the other area, we are developing new in situ visualization technologies and study their 
usability. The first technology that we have been developing, which we call Ximage, is based on 
our former work Explorable Images. We have extended Ximage to support image-space feature 
extraction and tracking. A paper reporting this work will be presented at LDAV 2015. The other 
technology we are developing is for supporting the need to study particle and field data together. 
We have developed a new data framework, which combines both the Eulerian and Lagrangian 
reference frames into a joint data format. By reorganizing Lagrangian information according to 
the Eulerian simulation grid into a “unit cell” based approach, we can provide an efficient out-of-
core means of sampling, querying, and operating with both representations simultaneously. We 
also extend this framework to generate multi-resolution subsets of the full data to suit the 
viewer’s needs and provide a fast flow-aware trajectory construction scheme. We are presently 
studying the effectiveness of this framework.

We will conduct a series of usability studies. One study will be using Ximage. The targeted 
simulation will be chosen from turbulent combustion, accelerator physics, or climate modeling. 
The other study will target the need in fusion research to study the behaviors of particles, ion and 
electrons. We will deploy our prototype libraries and tools into our science collaborator's 
workflow. The objective is to understand in what setting and to what extent our in situ methods 
present clear benefits over the conventional methods.

Milestone 3.b Prepare Usability Studies (Year 2–UC Davis, U Oregon) Identify 
participants and meet to discuss goals for the visualization and analysis tasks. Collect 
user data sets and design each user study according to code and hardware settings.
Expected Completion: FY16, Q2 Status: In progress

A UO Ph.D. student (James Kress) has relocated to Oak Ridge lab to embed with the XGC team 
in order to complete this milestone. Our plan is to evaluate their entire visualization & analysis 
pipeline and determine which pieces can be done in situ, which can be done post hoc, and which 
can be either way. After spending the summer working with XGC stakeholders (as an ORNL 
intern and not funded by XVis), James is now engaging with the XGC team and interviewing 
them and running small studies.

2.4 Proxy Analysis

Milestone 4.a Initial Mini-App Implementation (Year 1–SNL, ORNL) An initial 
implementation of mini-applications based on visualization and in situ workloads.



Expected Completion: FY15, Q4 Status: In progress, delayed

Although milestone 4.a was scheduled to be started at the beginning of the project, the majority of 
the work has been postponed in lieu of providing a VTK-m prototype (milestone 1.a), which is on 
the critical path.

The initial prototype for the Marching Cubes mini-app was implemented in FY15, Q4. The 
implementation will be hardened and contributed to Mantevo in FY16, Q1. This will give us an 
implementation to start working on subsequent milestones. A mini-driver for rendering and a 
mini-app for particle advection will follow soon after.

Milestone 4.b Validate Mini-App Characteristics (Year 2-ORNL) Validate behavior and 
resource usage of mini-applications against that of real applications and generate 
performance/resource models.
Expected Completion: FY16, Q4 Status: Preliminary work

In preparation for proxy analysis, we have been familiarizing ourselves with the Oxbow suite of 
application characterization tools and have performed some initial within-node characterization of 
a sequential contouring algorithm in VisIt and a data-parallel contouring algorithm in EAVL, one 
of the predecessor projects to VTK-m. These initial results point the way towards further 
investigation and directions for mini-app implementations – for example, while there is no thread-
level parallelism in VisIt, it was able to make use of integer SIMD arithmetic, while the highly-
parallel EAVL algorithm was not.

3 Other Activities

3.1 Outreach

“Roadmap for Many-Core Visualization Software in DOE,” Jeremy Meredith, GTC Presentation, 
March 2015.

“Visualization Toolkit: Faster, Better, Open Scientific Rendering and Compute,” Robert Maynard 
and Marcus Hanwell, GTC Presentation, March 2015.

“Hands-on Lab: In-Situ Data Analysis and Visualization: ParaView, Catalyst and VTK-m,” 
Marcus Hanwell and Robert Maynard, GTC Lab, March 2015.

“VTK-m,” Kenneth Moreland, DOECGF, April 2015.

“VTK-m: Accelerating the Visualization Toolkit for Multi-core and Many-core Architectures,” 
Christopher Sewell, et al., SciDAC PI Meeting (poster), July 2015.

“Trends and Advanced Concepts for Scientific Visualization,” Kwan-Liu Ma, Keynote speech, 
China Scientific Data Conference, August 26, 2015.

“VTK-m Overview,” Kenneth Moreland, VTK-m Code Sprint, September 1, 2015.

“New Techniques for Visualizing Large-Scale Scientific Data,” Kwan-Liu Ma, Invited talk, 
Software Center for High Performance Numerical Simulation, Chinese Academy of Engineering 
Physics, Beijing, China, September 2, 2015.

“VTK-m,” Jeremy Meredith, FASTMath PI Meeting, September 2015.

“Advanced Concepts and Strategies for Visualizing Large-Scale, Complex Simulation Data,”
Kwan-Liu Ma, Invited Talk, International Computational Accelerator Physics Conference (ICAP), 
October 14, 2015.



“Visualization and High Performance Computing,” Kwan-Liu Ma, Keynote speech, Symposium 
on Visualization in HPC, SIGGRAPH Asia, November 2, 2015.

The 10th Workshop on Ultrascale Visualization, Workshop Co-Chair, Kwan-Liu Ma, SC15, 
November 16, 2015.
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